All except 1 ONT:H30/[H30] isolate was sorbitol-positive. Fourteen isolates displayed apparent β-hemolytic activity on sheep blood agar including 9 of the 11 O2:H32/[H32] isolates and 2 of the 11 O86:H11 isolates, and the single O76:H25, O87:H10 and O116:H11 isolates, the majority of which (11 isolates) were recovered from swine feces in Chongqing city. The 2 hemolytic O86:H11 isolates were isolated from colon contents in a slaughter house in Beijing city and the single selleck chemicals llc O87:H10 isolate was isolated from a small intestine content in a slaughter house in Guizhou
province. Shiga toxin genes, adhesin genes and putative virulence genes The 93 STEC isolates were tested positive for stx 2 only. All except 1 isolate was stx 2e subtype by PCR subtyping. The exception was an O159:H16
isolate which was found to carry a new variant of stx 2e by sequencing. The new variant differs from the closest stx 2e (GenBank: AM904726) by 4.51% at nucleotide level. Three virulence-related genes (astA, ehxA and hlyA) and 2 markers for HPI (irp2 and fyuA) were screened. 53.76% (50/93) ALK inhibitor STEC isolates carried astA, 15.05% (14/93) isolates contained hemolysin gene hlyA and only 2.15% (2/93) isolates contained enterohemolysin gene ehxA. All hlyA positive STEC isolates showed hemolytic activity on standard sheep blood agar. Hemolysis was not observed in the 2 ehxA-positve STEC isolates. The
irp2 and fyuA genes were identified in 4 STEC isolates, all of which were ONT:H19/[H19] serotypes (Table 2). Among the 15 adherence-associated genes, 13 (eae, efa1, iha, lpfA O113, lpfA O157/OI-154, lpfA O157/OI-141, toxB, saa, F4, F5, F6, F17 or F41) were not detected in the 93 STEC isolates. paa was present in 7 STEC isolates. Two O86:H11 isolates, 1 O87:H10 isolate and 1 O116:H11 isolate carried F18. Eighty-two STEC isolates did not carry any of the adherence-associated genes tested (Table 2). Antibiotic resistance in the swine STEC isolates Antimicrobial resistance www.selleck.co.jp/products/Vorinostat-saha.html was determined against 23 antibiotics. The highest prevalence was tetracycline resistance with a rate of 79.57%. Most isolates were resistant to nalidixic acid and trimethoprim-sulfamethoxazole, followed by resistance to kanamycin with a rate of 78.49%, 73.12% and 55.91% respectively. Resistance rate to streptomycin, chloramphenicol, ampicillin and piperacillin was 48.39%, 37.63%, 25.81% and 20.43%, respectively. Lower resistance was observed for cephalothin, nitrofurantoin, ciprofloxacin, ceftriaxone, aztreonam, cefotaxime, cefuroxime, gentamicin, norfloxacin, levofloxacin, ampicillin-sulbactam with a rate ranging from 2.15% to 17.20%. All isolates were susceptible to imipenem and meropenem (Additional file 1: Table S1). Four isolates (4.3%) were susceptible to all 23 antimicrobial agents tested.