In this study, we considered the laser processing power and speed

In this study, we considered the laser processing power and speed, in addition to self-developed fixtures, to explore the laser processing path. Figure 2(a) shows the processing fixture used to attach the processed optical fibers; this fixture is capable of attaching five optical fibers simultaneously. Figure 2(b) shows a rotating fixture with a central hole packed tightly with optical fibers ready for processing in lockstep rotation. Using the preset structure highlighted at every 60��, the operator can process optical fibers every 60�� a total of six times.Figure 2.Schematic of the laser machining fixtures: (a) the processing fix0ture; and (b) the rotating and fixed optical fiber fixture.

The yellow portion of the structure shown in Figure 3 is the optical fiber to be processed, the blue dotted line denotes the established processing direction of the optical fiber, and the red arrows and circular patterns represent the moving path and processing area of the laser source. When the laser source and the blue dotted reference line move horizontally during processing, the structure adopts the parallel machining condition; otherwise, the vertical machining condition is employed.Figure 3.Schematic of the laser processing path: (a) parallel machining; and (b) vertical machining.The research goals of this study were to propose a comprehensive method for assessing the quality of window-type optical fibers processed by lasers, the convenience of light coupling in subsequent sensing measurements, and the mechanical strength of manufactured window optical fibers.

Therefore, we employed a multi-mode glass optical fiber with a 400-��m fiber core, manufactured by Newport? under the model number F-MBC, as the optical fiber. Regarding the size and structure, the optical fiber comprised a 400-��m fiber core, 430-��m cladding, and 730-��m coating, as shown in Figure 4. The fiber core was made of silica mater
Skin is the physical barrier for the human body, tasked with preventing damage from various external stimuli and preventing the loss of water [1]. Additionally, skin’s softness is related to the moisture in the skin, which is essential for protecting the body. It is composed of three layers: the epidermis (EP), the dermis (DM), and the subcutaneous layer. The EP layer is the outermost layer and acts as a protective barrier.

The stratum corneum (SC) is the outer layer of epidermis and is composed of dead skin cells made of keratin. Additionally, water in the skin plays an important role in gland secretions, regulation of body temperature, and the prevention of aging. Many approaches for measuring water concentration in Carfilzomib human skin have been proposed [2�C4], including electric conductance [5], transepidermal water loss [6], Fourier transform infrared spectroscopy [7], photothermal imaging [8], and confocal Raman spectroscopy [9].

Error rates are approximately three degrees when using a robotic

Error rates are approximately three degrees when using a robotic knee [11], however these error rates then increase to 7.88 degrees with human use; due to sensor attachment issues and soft tissue movement [13]. In addition, these techniques require the patient to wear multiple sensors. There is a need to consider if clinically useful data can be obtained with fewer sensors, as for ambulatory monitoring applications, decreasing the number of sensors can greatly enhance the usability of the system [14]. The reported errors in estimating joint angular kinematics using inertial sensors are in a range which makes them accurate only for identifying large deviations to the gait pattern.

As some abnormal pathological gait patterns have only subtle deviations there is a need for an inertial sensor processing technique that can identify a pathological gait deviation in which no spatio-temporal differences exist, but only subtle kinematic differences exist.As such, the purpose of this work was to investigate innovative ways by which raw inertial sensor data could be processed to provide clinically useful information. Specifically we want to determine if inertial sensor extracted features can be used to identify abnormal gait patterns in a pathological population with subtle gait pattern differences.ACL-R gait was chosen as the gait pathology to investigate for three reasons. Firstly, aberrant gait patterns post-ACL-R have been suggested to be a potentially important risk factor for the development of knee OA [15�C17].

Secondly, ACL-R gait has not been previously investigated with inertial sensors and thirdly, the deviations between ACL-R and normal, healthy gait patterns are minimal [18�C20]. Therefore, ACL-R participants provide a novel test cohort to determine if inertial sensors can be used to detect gait changes that are not obvious to the eye.2.?Experimental SectionSeventeen lower limbs of fourteen female athletes constituted the ACL-R group. Of these athletes, three participants had previously ruptured both right and left ACL, thus both lower limbs were included for the analysis in these participants (Table 1). Of the seventeen involved lower limbs analyzed in this work, eight were reconstructed via a hamstring auto-graft surgical procedure, with the remaining being a bone-patellar tendon-bone auto-graft.

At the time of testing all athletes were fully engaged in field or court based sports (e.g., Gaelic Dacomitinib football, soccer, hockey, basketball) at club or county level and no athlete was undergoing any form of formal rehabilitation. Seventeen female athletes with no previous history of knee joint injury constituted the control group (Table 1). All athletes played field or court based sports (e.g., Gaelic football, soccer, hockey, basketball) at club or county level. Ethical approval for the study was approved by the Universities ethics committee.

Nevertheless, most schemes assume deterministic transmission sequ

Nevertheless, most schemes assume deterministic transmission sequences, without considering MAC layer channel access rules. In addition, their performance significantly drops when channel errors are introduced, since high redundancy is required in the sense that more retransmissions must take place in order for the receiver to successfully decode the received encoded packets. As a result, the potential RLNC gain is not fully exploited. These problems can be mitigated by employing a MAC protocol that enables the exchange of information among the relays. However, relay cooperation usually introduces significant overheads and complexity that may not always be supported by low-power WSNs or WBANs. An alternative approach is to adopt a centralized architecture, where all the relays form part of a cloud infrastructure that is controlled by a central entity.

In this paper, we focus on an ambient WSN that acts as a distribution network, connecting one or more WBANs (sources) to a central process unit (destination), and investigate MAC schemes that efficiently handle the flow of information between the two communication ends. Initially, as a reference scheme, we consider baseline MAC (BS-MAC) based on the IEEE 802.15.6 MAC mechanism with slight modifications to support the multi-hop relay topology. In continuation, we apply the RLNC principles to the baseline scenario (NC-MAC), to show the potential gains and to identify significant performance weaknesses in the presence of channel errors.

Finally, we propose a cloud-assisted RLNC-based MAC (CLNC-MAC) that employs centralized control to coordinate transmissions in the relay network, in order to exploit the benefits of RLNC and enhance both performance and reliability.Very few related works can be found in the literature in this context. In [13], a cloud-assisted MAC protocol has been proposed and implemented for wireless local area network (WLAN) deployment. The main idea is to transform the access points into a unified user interface and concentrate MAC layer functions and processing to virtual machines provided by cloud services. Even though the practical contribution of this work is significant, no enhancements are made with respect to the MAC layer mechanism. In particular, the main discussion focuses on implementation issues, i.e., the modification of WLAN cards for virtual interconnection through an OpenFlow switch, whereas the IEEE 802.

11 MAC is employed with no major modifications. The aim of our work is different, since we adopt the cloud architecture as a means to exploit the potential of RLNC in cooperative relay scenarios. Carfilzomib We propose modifications on the IEEE 802.15.6 MAC layer protocol in order to coordinate the request for retransmissions and the data relaying with the help of the cloud, thus enhancing the decoding process of the NC packets at the destination.

On the other hand, inter-adsorbate interactions between charged a

On the other hand, inter-adsorbate interactions between charged adsorbates are usually repulsive, as described by electrostatic forces, and will induce compressive surface stresses on the surface layers of nanomechanical sensors. The strong adsorbate-substrate interactions occur because of chemical bond formation or chemical reaction. This interaction often leads to surface charge redistribution. A substrate gaining electrons from the adsorbates often results in tensile surface stresses, while transferring charges to the adsorbates often gives rise to compressive surface stresses. The overall adsorption-induced surface stresses are the net effect of the aforementioned mechanisms.Quantitative analysis of the displacement and stress fields of a nanomechanical sensor due to the adsorption-induced surface stress remains a theoretical challenge [9].

The complexity of the competing mechanisms requires detailed molecular modeling. On the other hand, device-level calculations of the displacement and stress fields are beyond the reach of molecular modeling, but can be satisfactorily described by continuum mechanics. For example, analytical formulas for the displacement of the cantilever subjected to surface stress have been derived [12�C14]. It thus naturally calls for multiscale modeling to couple the molecular model with the continuum description. Dareing and Thundat developed a semi-analytical model for calculating adsorption-induced surface stresses based on atomic interactions [15]. To simplify the derivation, the model was restricted to the case of a single atomic layer adsorption with a simple Lennard-Jones potential.

Chen et al. [16�C18] derived a multiscale method to couple a continuum description with first-principles density functional theory (DFT) calculations. This method linked atomic contributions with kinematic constraints imposed by continuum mechanics and provided a pathway to study detailed physics of adsorption-induced surface stresses. However, one drawback of this multiscale method is that the deformation field of the devices needs to be known a priori. The aim of this paper is to generalize the method by removing the kinematic constraints imposed on the device deformation field.In this study, we propose a multiscale simulation framework for nanomechanical cantilever sensors based on DFT calculations Dacomitinib and finite element method (FEM) analysis.

DFT calculations are used to compute the induced surface stress of molecular adsorption on the molecular recognition layer. The calculated surface stresses are then used in the FEM analysis to resolve the deformation and stress fields of the nanomechanical sensors. A gold-coated cantilever sensor exposed to alkanethiolate self-assembled monolayers (SAM) is used to demonstrate the applicability of the proposed multiscale framework.2.

A node transferring data to the base sends it in divided parts (a

A node transferring data to the base sends it in divided parts (as data packages) using different paths. When a failure occurs in a path, the associated data package cannot arrive at the base. To achieve guaranteed delivery, acknowledgement signals are used. In the case of an absent acknowledgement for a data package, the source node resends that package to a different path. By performing acknowledgement-associated data transfers and sustaining different paths alive, routing becomes more robust. It is obvious that some paths in this type of network would be shorter, allowing for lower energy costs. Transmission on these paths should be more frequent to reduce the total cost of energy consumed using these paths. In other words, more data packages should be transferred along shorter paths to achieve a lower energy consumption.

Second, nodes in WSNs present stringent energy constraints. They consume much more energy when they are in communication. In our proposed approach, the energy levels of the nodes should also be considered as well as the lengths of the paths. This is performed by choosing nodes having more energy in a routing task. Thus, the average network lifetime would be increased.Third, the bandwidth of wireless links in WSNs is limited. It is important not to involve too much information about overhead of the routing task in the communications. This is also a means of preserving more energy. We propose a new communication technique using ant agents in Section 2.1.Fourth, some node mobility should be allowed in some specific WSN applications.

In our approach, nodes are considered to be normally stable. However, probable changes in node locations do not preclude network operation safety. Instead, it causes some setup stage to organize paths well. However, transfer of data packages is still performed in this stage as quality grows over time by exploring new paths.To summarize the operation of the routing scheme, a node having information for the base station initializes the routing task by transferring data in packages to different neighbor nodes. Each node then chooses other neighbor nodes and so on. Thus, paths towards the base are formed and each routing operation supplies some information about optimum paths for the consequent routing tasks. While performing this operation, some agents (artificial ants) are used to achieve efficient routing.

This operation is explained in the following section.2.1. ACO ApproachIn the ACO based approach, each
The environment Batimastat is being affected more and more by the release of odorant pollutants in the atmosphere. These odors may discomfort the olfaction system and can even be harmful to human health. Electronic noses (e-noses) have been widely investigated [1,2], and are used for real-time environmental monitoring to prevent poison gas attacks by terrorists and gas leaks in chemical plants [3-5].