The dominant phylotypes most probably originated from midgut inhabitants. A sex specific variation was observed, this being reflected in the proportional changes of the microbial phyla, as well as at the species level. Identification methods detected a high microbial diversity among A. stephensi adult and larval
midgut. The micro flora of the investigated A. stephensi adults and larvae PARP signaling differed statistically and differences between the larval microbial diversity was more pronounced than the differences noted between A. stephensi male and female culturable and unculturables. This work provided basic information about bacterial diversity in midgut of lab-reared and field-caught A. stephensi male female and larval species and its population dynamics and hence, Selleckchem STI571 qualitative information about the total bacterial exposure in midgut environment. Our future work will include characterization of the different sources of microbes and a quantitative assessment of the different microbial taxa. It is promising that several of the isolates are Gram-negative gammaproteobacteria, for which there are well established means of genetic modification. All of the bacterial isolates from this study
will be further evaluated for their suitability as paratransgenic candidate. Methods Maintenance of Anopheles stephensi Cyclic colonies of Anopheles stephensi were maintained in a mosquitarium maintained at 28 ± 2°C and 70–80% humidity. Adult mosquitoes were offered raisins and 1% glucose solution as a source of energy. Female mosquitoes were allowed to feed on caged rabbit for their ovarian development. Eggs were collected in filter paper lined plastic bowls half filled with de-ionized selleck chemicals water and left undisturbed for two days to allow the eggs to hatch. Larvae were cultured in enamels
trays and were fed upon mixture of dog biscuit and yeast extract in 3:1 ratio. Following pupation, the pupae were transferred to BKM120 molecular weight accordingly labeled cages for emergence of adults. Collection of mosquitoes and isolation of bacterial flora from midgut IV instar anopheline larvae were collected thrice from cement tanks in District Jhajjar, Haryana, India (28°37′N and 76°39′E). The larvae were brought to the laboratory in Delhi within two hours of collection and those that are morphologically identified as Anopheles stephensi were pooled [46]. The larvae were surface sterilized for 5 sec. in 95% ethanol [28]. The larval guts were dissected aseptically in laminar hood using sterile entomological needles underneath a stereo microscope. The dissected midguts were transferred to the 100 μl of sterile phosphate-buffered solution (PBS) and were grounded to homogeneity. For studying the microflora of adult mosquito midgut, the IV instar larvae were allowed to emerge in the adult mosquitoes and the females and males were separated based on their morphological differences. The midguts of both the sexes were aseptically dissected as described for the IV instar larvae.