muridarum protein to affect cytokinesis in this assay. The degree of identity among CT223p, CT224p and CT225p is even
lower, and, therefore, it is even less intuitive that these proteins would share a common phenotype when produced within mammalian cells. Therefore, the molecular {Selleck Anti-diabetic Compound Library|Selleck Antidiabetic Compound Library|Selleck Anti-diabetic Compound Library|Selleck Antidiabetic Compound Library|Selleckchem Anti-diabetic Compound Library|Selleckchem Antidiabetic Compound Library|Selleckchem Anti-diabetic Compound Library|Selleckchem Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|buy Anti-diabetic Compound Library|Anti-diabetic Compound Library ic50|Anti-diabetic Compound Library price|Anti-diabetic Compound Library cost|Anti-diabetic Compound Library solubility dmso|Anti-diabetic Compound Library purchase|Anti-diabetic Compound Library manufacturer|Anti-diabetic Compound Library research buy|Anti-diabetic Compound Library order|Anti-diabetic Compound Library mouse|Anti-diabetic Compound Library chemical structure|Anti-diabetic Compound Library mw|Anti-diabetic Compound Library molecular weight|Anti-diabetic Compound Library datasheet|Anti-diabetic Compound Library supplier|Anti-diabetic Compound Library in vitro|Anti-diabetic Compound Library cell line|Anti-diabetic Compound Library concentration|Anti-diabetic Compound Library nmr|Anti-diabetic Compound Library in vivo|Anti-diabetic Compound Library clinical trial|Anti-diabetic Compound Library cell assay|Anti-diabetic Compound Library screening|Anti-diabetic Compound Library high throughput|buy Antidiabetic Compound Library|Antidiabetic Compound Library ic50|Antidiabetic Compound Library price|Antidiabetic Compound Library cost|Antidiabetic Compound Library solubility dmso|Antidiabetic Compound Library purchase|Antidiabetic Compound Library manufacturer|Antidiabetic Compound Library research buy|Antidiabetic Compound Library order|Antidiabetic Compound Library chemical structure|Antidiabetic Compound Library datasheet|Antidiabetic Compound Library supplier|Antidiabetic Compound Library in vitro|Antidiabetic Compound Library cell line|Antidiabetic Compound Library concentration|Antidiabetic Compound Library clinical trial|Antidiabetic Compound Library cell assay|Antidiabetic Compound Library screening|Antidiabetic Compound Library high throughput|Anti-diabetic Compound high throughput screening| mechanisms associated with the inhibition of cytokinesis observed in these studies remain unclear. There are many possible steps in the complicated process of cell division that might be affected by the Incs that affect cytokinesis. The cell cycle is under control of a family of protein kinases known as Cyclin-dependent kinases (Cdks), which are under control of various BIX 1294 concentration regulatory proteins such as CAK and CKIs [31, 32]. Some of these proteins are differently processed or differently abundant in chlamydiae-infected vs. uninfected cultured cells [15]. We hypothesize that CT223p and other Inc proteins directly or indirectly disrupt Cdk, cyclin, or possibly other protein functions and, thus, affect cell cycle control. We are currently using surrogate systems to identify possible host cell cycle-specific proteins that interact directly with CT223p at the inclusion membrane surface. Conclusion Plasmid-based expression
of the chlamydial inclusion membrane protein CT223p caused a reduction in mammalian cell cytokinesis in vitro. Other Inc proteins had a lesser effect on cytokinesis in this assay. These results support the conclusion that Ct223 expression by C. trachomatis and localization of the protein to the inclusion membrane is associated with the observed inhibition of Stem Cells inhibitor host cell cytokinesis in C. trachomatis-infected host cells. Acknowledgements This work was supported by P.H.S. grants AI42869 and AI48769, and through the Oregon State University Department of Microbiology Tartar Scholarship
Fund. We thank Dr. Aishu Ramakrishnan and all members of the Rockey laboratory for technical assistance and support. Dr. Hencelyn Chu is acknowledged for Bay 11-7085 coordinating the production and testing of the polyclonal anti-CT223p antisera. References 1. Valdivia RH:Chlamydia effector proteins and new insights into chlamydial cellular microbiology. Curr Opin Microbiol 2008,11(1):53–59.CrossRefPubMed 2. Fields KA, Hackstadt T: The chlamydial inclusion: escape from the endocytic pathway. Annu Rev Cell Dev Biol 2002, 18:221–245.CrossRefPubMed 3. Mabey D: Trachoma: recent developments. Adv Exp Med Biol 2008, 609:98–107.CrossRefPubMed 4. Stamm WE:Chlamydia trachomatis infections: progress and problems. J Infect Dis 1999,179(Suppl 2):S380–383.CrossRefPubMed 5. Alzhanov D, Barnes J, Hruby DE, Rockey DD: Chlamydial development is blocked in host cells transfected with Chlamydophila caviae incA. BMC Microbiol 2004, 4:24.CrossRefPubMed 6. Sisko JL, Spaeth K, Kumar Y, Valdivia RH: Multifunctional analysis of Chlamydia -specific genes in a yeast expression system. Mol Microbiol 2006,60(1):51–66.CrossRefPubMed 7.