J Bio Chem 2007, 282:8759–8767.CrossRef 28. Cui R, Gu YP, Zhang ZL, Xie ZX, Tian ZQ, Pang DW: Controllable synthesis of PbSe nanocubes in aqueous phase using a quasi-biosystem. J Mater Chem 2012, 22:3713–3716.CrossRef 29. Stürzenbaum SR, Höckner M, Panneerselvam A, Levitt J, Bouillard JS, Taniguchi S, Dailey LA, Khanbeigi RA, Rosca EV, Thanou M, Suhling K, Zayats AV, Green M: Biosynthesis of luminescent selleck inhibitor quantum dots in an earthworm. Nat Nanotechnol 2013, 8:57–60.CrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions MS carried out the total experiment and wrote the
manuscript. WJ participated in the data analysis. YH, YJ, and DH supervised the project. FL, ST, and JL provided the facilities and discussions related to them. YJ participated in the detection of the XPS and TEM. All authors read and approved the final manuscript.”
“Background Ion exchange materials find numerous large-scale industrial applications in various fields, such as water treatment processes, catalysis, and some others. The efficiency of the use of ion exchangers in some instances can be
substantially improved by tailored modification of commercially available ion exchange materials with, for example, functional metal nanoparticles (FMNPs) [1]. The modification of ion exchangers with FMNPs can be carried out by using the intermatrix synthesis (IMS) technique coupled with the Donnan exclusion effect. Such combination allows for production of polymer-metal nanocomposites with the distribution of FMNPs near the surface of AG-014699 supplier the polymer on what appears to be the most favorable in their practical applications. This technique has been used to modify the polymers with cation exchange functionality with FMNPs by using the procedure described by the following sequential stages: (1) immobilization (sorption) of metal or metal complex Protirelin ions (FMNP precursors) onto the functional groups of the polymer and (2) their chemical or electrochemical reduction inside the polymer matrix (IMS stage) [2–7]. The use of the functional polymers as supports
for the metal nanoparticles (MNPs) and metal oxide nanoparticles has, in this sense, one more important advantage dealing with the possibility to synthesize the FMNPs directly at the ‘point of use’ , i.e., inside the supporting polymer, which results in turn in the formation of the polymer-metal nanocomposites (PMNCs) with desired functionality [8–11]. Ag, due to its antibacterial features, represents one of the hot topics of investigation in the noble metal research. The unusual properties of nanometric scale materials in comparison with those of their macro counterparts give in many instances a number of advantages in their practical applications [12–14]. In fact, Ag-MNPs are widely used due to their more efficient antimicrobial activity in comparison with bulk silver [15].