Biochim Biophys Acta 1972, 261:284–289 PubMed 39 Tsai CM, Frasch

Biochim Biophys Acta 1972, 261:284–289.PubMed 39. Tsai CM, Frasch CE: A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 1982, 119:115–119.PubMedCrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions LP has given an important contribution

to the elaboration of paper. CdL, SB, AL, LODL and MRC gave important contributions in the order to design of the paper and to draft of manuscript. GG and AlL have cooperated for technical assistance. GDR and MM have studied histopathology features. FR and LR conceived the study participating to its scientific design. C188-9 supplier All authors read and approved the final manuscript.”
“Background Mycoplasma synoviae is

an economically important pathogen of poultry, causing synovitis, chronic respiratory tract disease, and retarded growth in chickens and turkeys [1, 2]. M. synoviae is a member of the genus Mycoplasma of the class Mollicutes, a group of wall-less Gram-positive bacteria with genomes ranging from 1358 kb to as little as 580 kb [3]. The genome sequence of M. synoviae strain WVU 1853 has been determined and comparative analysis with M. gallisepticum, another major avian pathogen, provided evidence 17DMAG for horizontal gene transfer between the two species, though belonging to two distinct phylogenetic groups [4, 5]. Among the genes that could have arisen by horizontal gene transfer are those encoding for haemagglutinins. In avian mycoplasmas, genes encoding for these immunogenic and surface exposed proteins are the subject of considerable antigenic variability [6]. By alternating the composition of their surface proteins, mycoplasmas are thought to colonize more efficiently mucosal surfaces and become more virulent [7,

8]. Haemagglutinins account among the most important surface proteins involved in Wilson disease protein colonization and virulence of avian mycoplasmas [6, 9]. In M. synoviae, haemagglutinins are encoded by related sequences of a multigene family referred to as vlhA genes [10–12]. The haemagglutinins of M. gallisepticum (pMGA) and M. imitans are also encoded by multigene families related to vlhA [13, 14]. Both organization and control of expression of vlhA genes are quite different between M. gallisepticum and M. synoviae. In the former species, vlhA genes are located in five distinct genomic regions and each gene appears to be translationally competent [14, 15]. By contrast, in M. synoviae, all vlhA sequences are confined to a restricted genomic region with a unique copy being expressed in a single strain [16, 17] The uniquely expressed vlhA gene of M. synoviae yields a product that is cleaved post-translationally into a N-terminal lipoprotein (MSPB) and a C-terminal haemagglutinin protein (MSPA) [11]. Cleavage was found to occur immediately after amino acid residue 344 [17].

Comments are closed.